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Quantitative Susceptibility Mapping: Report From the
2016 Reconstruction Challenge

Christian Langkammer ,1 Ferdinand Schweser ,2,3* Karin Shmueli ,4

Christian Kames,5 Xu Li,6,7 Li Guo,8 Carlos Milovic ,9,10 Jinsuh Kim,11

Hongjiang Wei,12 Kristian Bredies,13 Sagar Buch,14 Yihao Guo,6 Zhe Liu ,15

Jakob Meineke,16 Alexander Rauscher,5 Jos�e P. Marques,17 and Berkin Bilgic18

Purpose: The aim of the 2016 quantitative susceptibility map-

ping (QSM) reconstruction challenge was to test the ability of

various QSM algorithms to recover the underlying susceptibil-

ity from phase data faithfully.
Methods: Gradient-echo images of a healthy volunteer

acquired at 3T in a single orientation with 1.06 mm isotropic
resolution. A reference susceptibility map was provided, which

was computed using the susceptibility tensor imaging algo-
rithm on data acquired at 12 head orientations.
Susceptibility maps calculated from the single orientation data
were compared against the reference susceptibility map. Devi-
ations were quantified using the following metrics: root mean
squared error (RMSE), structure similarity index (SSIM), high-
frequency error norm (HFEN), and the error in selected white
and gray matter regions.
Results: Twenty-seven submissions were evaluated. Most of
the best scoring approaches estimated the spatial frequency
content in the ill-conditioned domain of the dipole kernel using
compressed sensing strategies. The top 10 maps in each cat-
egory had similar error metrics but substantially different visual
appearance.
Conclusion: Because QSM algorithms were optimized to min-
imize error metrics, the resulting susceptibility maps suffered
from over-smoothing and conspicuity loss in fine features such
as vessels. As such, the challenge highlighted the need for
better numerical image quality criteria. Magn Reson Med
79:1661–1673, 2018. VC 2017 International Society for Mag-
netic Resonance in Medicine.
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INTRODUCTION

Quantitative susceptibility mapping (QSM) aims to deter-
mine a basic physical property (i.e., tissue magnetic sus-
ceptibility) in vivo that is highly sensitive to tissue
molecular composition and disease-induced tissue dam-
age (1–5). QSM solves an inverse field-to-source prob-
lem, calculating the underlying magnetic susceptibility
distribution from gradient-echo (GRE) phase images.
Early concepts for QSM were introduced two decades
ago (6–12), and more refined methods recently have been
introduced to allow the calculation of susceptibility with
reduced reconstruction artefacts from a single orientation
in the clinical setting (13,14). The clinical value of QSM
currently is being explored and holds great promise for
vascular, inflammatory, and neurodegenerative diseases
of the brain (15–19). As such, the QSM field rapidly is
developing: QSM increasingly is being used in clinical
studies of neurological disorders, and applications out-
side the brain are being explored (20–24). The quantita-
tive nature of the technique promises to provide
biomarkers that allow the clinical monitoring of disease
progression and treatment effects. However, especially
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considering the quantitative nature of QSM, clinical
translation will require a thorough understanding of the
reproducibility and accuracy of susceptibility measure-
ments with QSM. Also, for a comparative assessment of
QSM-based literature reports, it is important to under-
stand how comparable susceptibility values are if recon-
structed with different QSM algorithms.

A variety of algorithms have been developed for the
numerical solution of the field-to-source inverse problem
at the heart of QSM. However, although QSM is sup-
posed to yield a physical tissue property, susceptibility
maps calculated with different algorithms from the same
dataset can show substantial differences, as illustrated in
a recent review by Wang and Liu (1). To systematically
compare and quantitatively assess the many available
algorithms, we implemented the first QSM reconstruc-
tion challenge in the context of the 4th International
Workshop on MRI Phase Contrast and Quantitative Sus-
ceptibility Mapping, held September 26–28, 2016, at the
Medical University of Graz, Austria (www.qsm2016.
com). The primary goal of the challenge was to test the
ability of various QSM algorithms to recover the underly-
ing susceptibility distribution from a healthy volunteer’s
phase data faithfully. The secondary goal was to provide
a common reference dataset that would help benchmark
not only existing QSM algorithms but also methods that
would be developed in the future.

The challenge was announced at the Electro-Magnetic
Tissue Properties (EMTP) (formerly susceptibility
weighted imaging (SWI)) study group meeting at the
2016 annual meeting of the International Society for
Magnetic Resonance in Medicine (ISMRM) in Singapore
on May 12, 2016. Data and instructions could be down-
loaded from the workshop website (qsm.neuroimaging.at)
starting from May 12, 2016, and the deadline for a sub-
mission of reconstructed susceptibility maps was Septem-
ber 15, 2016. The results of the evaluation of submitted
maps were presented and discussed at the QSM work-
shop in Graz on September 27, 2016. Additionally, the
present report includes the input from the discussions in
Graz and at the ISMRM EMTP study group meeting in
Honolulu, Hawaii, on April 26, 2017.

METHODS

General Considerations on Input and Reference Data

In the literature, evaluation of susceptibility mapping
algorithms frequently is performed using numerical
phantoms (25,26) or acquired phantom data (27–29).
Most physical phantoms used have consisted of compart-
ments filled with solutions or gels of different magnetic
susceptibilities, that is, regions of piece-wise constant
magnetic susceptibility. Such geometries allow a near-
perfect recovery of the underlying susceptibility distribu-
tion using regularization of the inverse problem with
total (generalized) variation (TV/TGV) or morphological
priors because the piece-wise constant constraints and
priors exactly match the actual susceptibility distribu-
tion. Using a physical phantom thus would put these
types of algorithms at a competitive advantage compared
to other algorithm types. Moreover, a piece-wise constant
susceptibility distribution is not a realistic model of mag-
netic susceptibility in the brain.

A limitation of numerical models is that contributions

from sources other than isotropic bulk magnetic suscepti-
bility, such as chemical exchange effects (30), aniso-

tropic susceptibility (31,32), and microstructure (33–36),
are difficult to model because the magnitude of these

effects in vivo is not yet completely understood. Further-
more, physiological noise, flow, and partial volume

effects are difficult to model realistically.
To address the shortcomings of physical phantoms

and numerical models, in this challenge we decided to

use a human susceptibility map measured in vivo as a
reference. Attempting to take magnetic susceptibility

anisotropy into account, we employed the susceptibility
tensor imaging (STI) approach (37) to determine the ref-

erence map. STI reconstructs the susceptibility tensor
distribution without any regularization or morphological
priors. From the susceptibility tensor, it is possible to

estimate the expected susceptibility distribution that
would be measured with a single-angle susceptibility

mapping technique. This effective susceptibility distribu-
tion was used as the reference susceptibility map in the

challenge, as described below.
We decided to provide the reference susceptibility

map to the contestants to reduce the potentially negative

impact of suboptimal algorithm-specific parameter
choices on the challenge outcome. The availability of the

reference allowed the contestants to optimize algorithmic
parameters properly and then submit the best scoring

result they could achieve with their algorithm.

Selection of the Reference

The candidates for gold standard susceptibility were
either a calculation of susceptibility through multiple

orientation sampling (COSMOS) (27) susceptibility map,
or x33 from the STI solution (37). The benefits of these

two maps as reference susceptibility distributions
include 1) they are calculated without numerical regular-

ization, and therefore no spatial smoothing or incorpo-
rated prior information; and 2) high signal-to-noise ratio
because both maps are computed from joint processing

of images acquired at 12 orientations of the head with
respect to B0.

COSMOS models susceptibility as a scalar, isotropic
property, ignoring its orientation dependence. A COS-

MOS susceptibility map reflects the effective magnetic
susceptibility averaged over all 12 orientations of the
head. Therefore, we concluded that COSMOS suscepti-

bility maps would not provide an accurate reference for
single-angle susceptibility mapping with the head in the

normal position, particularly in regions with anisotropic
magnetic susceptibility such as white matter. To mitigate

this orientation bias, we chose x33 of the STI solution as
the reference. Based on STI theory (37), the Fourier

domain phase HðkÞ; when the main field lies along H in
the subject frame, is given by

HðkÞ ¼ 1

3
HT � X �H �H � k kT � X �H

k2 ; [1]

where k is a vector of all Fourier domain coordinates
and X is the susceptibility tensor in the subject frame
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and ðÞT denotes matrix transposition. When the acquisi-

tion is performed in the transverse plane relative to the

subject coordinates, that is, H ¼ ½0; 0; 1�T , the signal

equation becomes

HðkÞ ¼ 1

3
� k2

z

k2

� �
x33 �

kz

k2
ðkx x13 þ ky x23Þ: [2]

The relationship commonly used in single-orientation

QSM assumes that the terms with the off-diagonal tensor

elements, x13 and x23, are negligible:

HðkÞ ¼ 1

3
� k2

z

k2

� �
x33;

¼ D x33;

[3]

where D is the dipole kernel in the Fourier domain.

Equation [3] motivates the use of x33 as the reference

susceptibility that gives rise to the observed phase

signal.

Data and Source Code

MRI data were acquired in a healthy female volunteer

(age 30 years) at a 3T system (Tim Trio, Siemens Health-

care GmbH, Erlangen, Germany) with institutional

review board approval from Massachusetts General

Hospital.
The imaging data provided to the contestants as inputs

for the susceptibility mapping included the following

datasets:

� 3D gradient-echo magnitude and wrapped phase

images acquired with axial slab orientation (and the

head in the normal supine position)
� A magnetization-prepared rapid gradient echo

(MPRAGE) image (38) matching the GRE volume

because MPRAGE images are routinely acquired in

clinical brain imaging studies and certain QSM algo-

rithms use an MPRAGE image as an input, i.e. as

prior information.
� A background field-corrected tissue phase image.

We used the Laplacian boundary value (LBV)

method (39) after transmit phase removal by fitting

and subtracting a fourth-order 3D-polynomial. LBV

was used because it outperformed all other proposed

background field correction methods in a recent

comparison study (40). This image was provided as

an attempt to eliminate a potential variability in sub-

mitted susceptibility maps due to differences in

background field removal techniques. However,

because single-step QSM methods are designed to

solve background field removal and inversion prob-

lems simultaneously, those algorithms could use the

unprocessed wrapped phase GRE images.
� A brain mask obtained from the FSL (https://fsl.

fmrib.ox.ac.uk/fsl/fslwiki/) Brain Extraction Tool

(41) was also provided to reduce confounding effects

resulting from the use of different masks.
� The reference susceptibility map x33, which was cal-

culated using STI (37). The GRE phase images from

each head orientation were affine-registered to the

axial slab orientation (reference position); masked;

and then the background fields were removed, as

described for the single orientation case above. This

local field information was then fed into an iterative

LSQR solver (42) to estimate all components of the

symmetric susceptibility tensor and provide the ten-

sor element x33 as reference susceptibility map.

3D GRE with wave-CAIPI acquisition (43) was used to

acquire images of the head with 1.06 mm isotropic reso-

lution in 12 different orientations with respect to B0 (the

head orientation table can be found in the downloadable

dataset). Further sequence parameters were echo time

(TE)¼25 ms, repetition time (TR)¼ 35 ms, bandwidth

(BW)¼100 Hz/pixel, and a 94 s acquisition time for each

head orientation with 15-fold acceleration using a 32

channel head coil (Siemens Healthcare GmbH). Roemer/

sensitivity encoding coil combination was employed

(44,45), which used sensitivities estimated from refer-

ence acquisitions made with both head and body coil

reception. Wave-CAIPI is an accelerated acquisition/

reconstruction technique that substantially reduces the

scan time, which is especially useful for multi-

orientation scans. Despite 15-fold acceleration, the aver-

age g-factor penalty due to parallel imaging reconstruc-

tion was only 9%. Thus, aliasing artifacts or noise

amplification are not expected to impact the resulting

susceptibilities (43).
MPRAGE acquisition employed the same resolution

and matrix size as 3D-GRE and sampled four echoes

using TE1¼2.05 ms; echo spacing¼ 1.84 ms; TR¼2,510

ms; inversion time (TI)¼1,200 ms; BW¼ 651 Hz/pixel;

and flip angle¼ 7�. The acquisition took 5 min 39 s using

twofold generalized autocalibrating partially parallel

acquisitions (GRAPPA) acceleration (46). The magnitude

images at all four echo times were combined by comput-

ing the root sum of squares (47), and the combined mag-

nitude image was provided to the participants.
In addition to the imaging data, MatLab (MathWorks,

Natick, MA) source code was provided for the numerical

evaluation of the dataset according to the error metrics

described in detail below. This code allowed the contest-

ants to focus on optimizing their algorithmic parameters

without spending time writing scripts for the calculation

of error metrics. The source code also included the

widely utilized fast QSM reconstructions, thresholded k-

space division (TKD) (28), and a closed-form L2-regular-

ized algorithm (48) to provide contestants with a direct

performance comparison to these algorithms.
The images and the MatLab (MathWorks) code for the

QSM reconstruction challenge will remain available at

http://qsm.neuroimaging.at. In addition to the data pro-

vided at the time of the challenge and described above,

the archive currently also contains the GRE data magni-

tude and phase data acquired in all 12 orientations. The

images provided are shown in Figure 1.

Numerical Measures of QSM Reconstruction Quality

We employed quantitative error metrics to evaluate the

difference between the reference susceptibility map and

the submitted susceptibility maps. In addition to the root
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mean squared error (RMSE) commonly used in the litera-
ture, we employed three additional error measures that
often are utilized in the fields of computer vision and
image reconstruction:

� The high-frequency error norm (HFEN) (49), which
aims to measure the fidelity at high spatial frequen-
cies. HFEN applies a Laplacian of a Gaussian (LoG)
filter on the reference and input volumes and
reports the L2 norm of their difference, normalized
by the norm of the LoG-filtered reference.

� The structural similarity index (SSIM) (50), which is
a combined measure obtained from three comple-
mentary components (luminance similarity, contrast
similarity, and structural similarity). SSIM aims to
provide a metric that better reflects the “visual” sim-
ilarity to the reference.

� The absolute value of the mean error in selected
anatomical structures (region of interest (ROI) error).
To this end, we manually defined ROIs in white
matter (genu and splenium of corpus callosum, fron-
tal white matter, occipital white matter, capsula
interna) and gray matter nuclei (globus pallidus,
putamen, caudate nucleus, red nucleus, substantia
nigra, and dentate nucleus) on the reference suscep-
tibility map, x33.

These error metrics were calculated for each submitted
map. For RMSE, HFEN and ROI error, smaller values
denote better performance, whereas SSIM is normalized
between 0 and 1, with 1 being the best possible result.
The implementation of these error metrics was provided
to the contestants as MatLab (MathWorks) source code,
together with the downloadable image dataset.

Our current challenge format did not include a com-
parison of the reconstruction speed of the different algo-
rithms because the QSM images were processed on the
individual computers of the respective research groups
using different development environments (e.g., MatLab
(MathWorks), Python, Cþþ, CUDA).

All susceptibility values are reported as parts per mil-
lion (ppm) in the following.

RESULTS

Brief Description of the Algorithms Used by the
Contestants

Overall, 27 susceptibility maps from 13 groups were
evaluated. The algorithms either used the provided pre-
processed (background removed) phase or the raw,
wrapped phase. Several algorithms used the GRE magni-
tude for stabilization of the dipole inversion, and one
approach (PHILIPS DTV) also utilized the MPRAGE
images.

The algorithms are briefly described in Table 1, and
images of a single central transverse slice of all algo-
rithms are shown in Figure 2.

Numerical Results: Winners

Table 2 shows the results of the top ranked algorithms in
each evaluation category. When all submissions were eval-
uated, RMSE ranged from 69.0 to 140.9 (median¼83.9),
HFEN from 63.5 to 127.3 (median¼ 75.9), SSIM from 0.94
to 0.63 (median¼ 0.82), and ROI ERROR from 0.016 to
0.039 ppm (median¼0.020). The winning QSM recon-
structions also are depicted in detail in Figure 3.

Winning Approach: RMSE

The winner in the RMSE category was the approach
developed by Alexander Rauscher’s team at the Univer-
sity of British Columbia, Canada. This algorithm used a
weighted variant of a two-step dipole inversion algo-
rithm (51). It adopts an incremental dipole inversion
strategy (52–54), dividing the Fourier domain into well-
conditioned and ill-conditioned regions. In the first step,
the well-conditioned region is reconstructed by solving
f ¼ F�1DF xwell using an LSMR solver (55) in which f is
the local field in spatial space, F is the forward Fourier

FIG. 1. Image data provided to the contestants. The susceptibility maps are scaled from �0.1 to 0.25 ppm, the raw phase is scaled
between 6p radians, and the LBV-phase image is scaled from �0.05 to 0.05 radians. With the exception of v33, the reconstructed sus-

ceptibility tensor component images (marked here with asterisks) were not provided for the reconstruction challenge but are now
included in the downloadable data set at qsm.neuroimaging.at.
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Table 1
Brief Description of All QSM Algorithms Participating in the Reconstruction Challenge

Name Description
Input Phase
RAW/LBV*

TKD (provided) Threshold-based k-space division (TKD) (28) with zeroes at ill-conditioned regions (cone) in
k-space, threshold¼0.19

LBV

CFL2 (provided) Closed-form L2-regularized inversion (48) LBV
MARTINOS WTV Compressed sensing compensated QSM (54) with accelerated reconstruction using alternat-

ing direction method of multipliers (ADMM) optimization
LBV

GRAZ TGV Total generalized variation (TGV)-based method incorporating phase unwrapping, back-
ground field removal, and dipole inversion in single iteration (66)

RAW

GRAZ TGV L1 Total generalized variation (TGV)-based method (66) with additional L1 magnitude
stabilization

RAW

JENA HEIDI Hybrid algorithm based on Homogeneity Enabled Incremental Dipole Inversion (HEIDI) that

solves three subdomains of k-space using different approaches, depending on condition-
ing: 1) well-conditioned k-space solved using unregularized LSQR; 2) critical part of k-

space recovered by solving weighted total variation problem with priors derived from
phase images; and 3) transition area derived from LSQR solution using denoising (53).
Parameters defining three subdomains chosen to obtain optimal error measures relative to

gold standard

LBV

JENA SDI TKD algorithm with extreme thresholding of the dipole kernel and underestimation compensa-

tion based on deconvolution point-spread function as in superfast dipole inversion (SDI) (67)

LBV

UCL TKD 1 TKD as in (14,67), that is, without zeroes inside k-space cone. Threshold of d ¼ 2
3 used with

no correction for x underestimation
LBV

UCL TIK Closed-form Tikhonov (TIK) inversion as alluded to in (68) and mentioned in (1) as Tikhonov-
regularized minimal norm solution. 1 had a¼0.0588 and no correction for x underestima-
tion. 2 had a¼0.0588 and correction for x underestimation with a factor of 1.65. 4 had

a¼0.025 and correction for x underestimation with a factor of 1.30.

LBV

JHU-XMU SFCRKDN Based on structural feature-based collaborative reconstruction (SFCR) QSM paper in (58); sim-

plified L2 regularization terms in M-step and S-step; added de-noising operation, k-space–
based L1 solver, and HEIDI-like k-space combination

LBV

JHU-XMU SFCR2 Based on SFCR QSM paper in (58); L1 and L2 regularized two-step reconstruction with reg-

ularization a priori extracted from magnitude and interim susceptibility maps. See winning
approach in categories HFEN and SSIM.

LBV

CHILE TGV L2 Magnitude-weighted TGV. Uses L2 data fidelity term, spatially weighted by square of magni-
tude. First-order approximation of nonlinear term (69)

LBV

CHILE TGV NL Nonlinear (NL) TGV result. Uses nonlinear data fidelity term, similar to Liu’s nonlinear MEDI

but with fast solver with alternating direction method of multipliers (ADMM) and mixture of
global and local solvers to deal with nonlinear equation

LBV

CHILE NLD Discretization of dipole kernel based on (70). Uses finite differences and DFT to achieve ana-
lytical solution in Fourier domain

LBV

CHILE NLG Dipole kernel defined in space by Green’s function, integrating it for each voxel (71) LBV

CHICAGO TGV Algorithm based on TGV QSM method (66), implemented on GPU-hardware (CUDA 7.5,
NVIDIA GeForce GTX 980TI)

RAW

BERKELEY STAR Streaking artifacts reduction (STAR) via isolating and calculating strong susceptibility sources
automatically, then large and small susceptibility values were reconstructed using two-
level TV regularization approach (72)

LBV

VANC UBC LSMR solver (55) followed by weighted compressed sensing minimization. See winning
approach in category RMSE.

LBV

IBR ITSWIM Variable regularization threshold for inverse process/k-space improvement with binary mask

including deep gray matter nuclei and veins used in iterative algorithm (73)

LBV

SMU MATV Morphology-adaptive total variation (MATV) separates target susceptibility into smooth and

non-smooth regions in which the latter are assigned smaller TV weights than smooth
regions during dipole inversion (59). See winning approach in ROI accuracy category.

LBV

SMU MTKD TKD with morphological priors (MTKD). Target susceptibility map is separated into smooth

and non-smooth regions by exploiting morphological information. Gradient of target sus-
ceptibility map forced to be zero in smooth regions and to be gradient of TKD-

reconstructed susceptibility map in non-smooth regions (74).

LBV

NY MEDI Morphology-enabled dipole inversion (MEDI) method using Bayesian regularization approach
that adds spatial priors from magnitude image (13,25)

LBV

NY PD Solving objective of MEDI using primal-dual (PD) formulation of total variation and forward
difference method for discretization (61)

LBV

NY TFI The total field inversion (TFI) method simultaneously estimates background and local fields,
preventing error propagation from background field removal to QSM (75)

RAW

PHILIPS DTV Single-step QSM starting from wrapped raw phase using directional total-variation (DTV),

with MPRAGE as prior for estimating edges (76)

RAW

*LBV, Laplacian boundary value preprocessed phase; RAW, raw phase (for single step algorithms).

The algorithms are named to reflect the team’s institution or location followed by an abbreviation related to the technique(s) exploited
by each algorithm.
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FIG. 2. A single transverse slice from all QSM reconstructions submitted for the challenge. QSM images are scaled from �0.1 to
0.25 ppm. See Table 1 for a brief description of all the QSM reconstruction algorithms shown here.
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transform, and F�1 is the inverse Fourier transform. To
avoid streaking artifacts, the implicit regularization prop-
erties of Krylov subspace methods (56) are used by ter-
minating the iterative process after only 5 iterations.

To reconstruct the ill-conditioned region, a weighted
total variation minimization problem was solved:

x� ¼ argmin
x

jjxjjWTV þ
m

2
jjMx� xwelljj22; [4]

where M ¼ F�1ðjDj > dÞF is a sampling matrix taking
the value 1 in the well-conditioned region and 0 in
the ill-conditioned region according to a threshold
d applied to jDj, m is the regularization parameter,
jjxjjWTV ¼ +W jrxj is the weighted anisotropic total vari-
ation, and W ¼ 1=ðjrxwellj þ 10�6Þ is a weighting matrix
derived from the gradient (r) of the well-conditioned
susceptibility map (xwell) reconstructed in step 1. The
minimization was solved using the alternating direction
method of multipliers (ADMM) (57). The parameters
used were m ¼ 6 � 104 and d ¼ 0:197. The reconstruction
time was 5.7 seconds.

Winning Approach: HFEN and SSIM

The JHU-XMU SFCR2 algorithm developed by Xu Li’s
team at Johns Hopkins University, Maryland, USA, was
the winner in both HFEN and SSIM categories. It used a
two-step structural feature-based collaborative recon-
struction algorithm (58). In the first step, an interim sus-
ceptibility map x̂ was reconstructed by using a
compressed sensing (CS) model in the Fourier domain
with two regularization constraints:

x̂ ¼ argmin
x

l1jjdiagðMÞxkðkÞ � diagðMÞFxjj22 þ jjPmagrxjj1

þ l2jjRxjj22;
[5]

where the structural prior Pmag was derived by thresh-
olding the gradient amplitude of the magnitude image,
with 30% voxels considered as edges for L1 regulariza-
tion (in Pmag , edges were set to 0 and regions with no
edges to 1). The fidelity mask R for the L2 regularization
was generated by combining masks obtained via thresh-
olding a preliminary QSM map xkðkÞ calculated with
TKD and its gradient (similar to Fig. 4 in (58), with

thresholds of 0.04 ppm for QSM and 0.1 for its gradient
norm square). M is a binary mask indicating the well-
conditioned region in the Fourier domain, that is,
M ¼ jDj > d, where d is a threshold on the dipole kernel
in the Fourier domain. Parameters chosen for this step
were d ¼ 0:19; l1 ¼ 50, and l2 ¼ 2; and processing was
terminated after three iterations. The final susceptibility
map was then fitted in the spatial domain using
weighted minimization:

x ¼ argmin
x

g1jjWðf� F�1DFxÞjj22 þ jjPx̂rxjj1 þ g2jjRxjj22;

[6]

where the structural prior Px̂ was extracted from the
interim susceptibility map x^ (the solution of Eq. [5])

Table 2
Top 10 Algorithms With the Best Scores in Each Category Evaluated for the QSM Reconstruction Challenge

RMSE (%) HFEN (%) SSIM (0–1) ROI Error (ppm)

69.0 VANC UBC 63.5 JHU-XMU SFCR2 0.94 JHU-XMU SFCR2 0.016 SMU MATV
70.3 JHU-XMU SFCR2 68.8 GRAZ TGV L1 JHU-XMU SFCRKDN NY PD

73.6 MARTINOS WTV 68.9 VANC UBC 0.93 NY MEDI 0.017 CHILE TGV NL
74.2 PHILIPS DTV 70.9 PHILIPS DTV GRAZ TGV CHILE NLD
74.6 GRAZ TGV L1 71.8 SMU MATV 0.87 GRAZ TGV L1 SMU MTKD

75.2 UCL TIK 1 73.1 UCL TIK 1 0.84 CHILE TGV L2 0.018 CFL2
76.6 UCL TKD 1 73.6 MARTINOS WTV NY TFI UCL TIK 2

77.5 GRAZ TGV 74.1 IBR ITSWIM 0.83 JENA HEIDI UCL TIK 4
BERKELEY STAR 74.2 JHU-XMU SFCRKDN CHILE NLD JHU-XMU SFCRKDN

79.1 SMU MATV GRAZ TGV CHILE TGV NL CHILE TGV L2

HFEN, high-frequency error norm; RMSE, root mean squared error; SSIM, structure similarity index. See Table 1 for a brief description
of all the QSM reconstruction algorithms shown here.

FIG. 3. Sagittal, coronal and axial slices of QSM reconstructions

of the winners in each category: RMSE (VANC UBC), HFEN, and
SSIM, respectively (JHU-XMU SFCR2), and ROI error (SMU
MATV). QSM images are scaled from �0.1 to 0.25 ppm. See Table

1 for a brief description of the QSM reconstruction algorithms
shown here.
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with similar 30% edge voxels; W ¼ 1=jfj1=3 is a weight-

ing matrix calculated from the local field f; and the

same fidelity mask R as in the first step was used. Regu-

larization parameters chosen for this step were g1 ¼ 50

and g2 ¼ 1, and iterative processes were terminated after

2 iterations.

Winning Approach: ROI Accuracy

The winner in this category was the morphology-adaptive

total variation (MATV) algorithm, developed by Yanqiu

Feng’s team from Southern Medical University, Guang-

zhou, China. This algorithm first classifies the imaging

target into smooth and non-smooth regions by threshold-

ing the magnitude gradient map (59). In the dipole inver-

sion, the regularization weights are adapted according to

local morphological information: voxels in smooth regions

are assigned larger TV regularization weights than in non-

smooth regions. The QSM reconstruction via the MATV

algorithm can be formulated as follows:

x ¼ argmin
x

jjWðf� F�1DFxÞjj22 þ ajjPmagrxjj1
þ bjjð1� PmagÞjjrx1; [7]

where W is a data-weighting matrix to compensate the

measured field noise (60) and a and b are the regulariza-

tion parameters. The regularization parameters used

were a¼ 0.003, b50.0009.
Given only a marginal numerical difference to the above

described approach, we would like to also acknowledge

the primal-dual (PD) and forward gradient implementa-

tion algorithm, developed by Yi Wang’s team from Cornell

University, New York, USA (61).

DISCUSSION

The QSM 2016 reconstruction challenge established a

framework for the numerical comparison of QSM algo-

rithms. We limited the challenge to a single dataset that

matched conventional clinical acquisitions closely with

respect to the resolution, readout BW, TE, and coverage.

In the following, we summarize the results, discuss the

limitations of the design of the challenge, and highlight
the lessons learned.

Summary of Results

The JHU-XMU SFCR2 algorithm won in two categories,
SSIM and HFEN, and finished second in the RMSE rank-
ing. The other winners, regarding RMSE and ROI accu-
racy, were the VANC UBC and MSU MATV algorithms.
The top three algorithms in the RMSE ranking relied on
reconstruction approaches known from CS MRI. As
opposed to regularized inversion, for which the entire
Fourier domain is affected by regularization, in CS
approaches only the ill-conditioned Fourier subdomain
of the susceptibility map is estimated by minimizing a
sparsity enforcing metric. This limitation to only a sub-
space of the Fourier domain was probably the key for
allowing these top-ranking approaches to produce the
best reconstruction accuracies. However, these winning
maps also were not ideal from a visual or radiological
point of view, suffering from over-smoothing and conspi-
cuity loss in fine structures (Figs. 2 and 3). CS techni-
ques employed in accelerated MR data acquisition
exploit incoherent aliasing artifacts arising from pseudo-
random undersampling of the k-space (62). The dipole
artifacts in QSM reconstruction, however, appear more
structured due to undersampling only near the magic
angle in the Fourier domain. Although the incoherent
aliasing prerequisite for CS was not fully met, we think
these strategies performed well due to two main reasons:

1. Because the missing content in the ill-conditioned
region is a relatively small portion (e.g., 20%–30%)
of the Fourier domain, its estimation is easier, and
potential blurring artifacts mainly impact this conical
region, whereas the majority of the Fourier spectrum
of the susceptibility cannot be altered to minimize
the employed sparsity or smoothness metric (54).

2. CS methods involving wavelet penalties do enjoy
partial incoherence because the undersampling arti-
facts are distributed across the wavelet scales. The
incoherence in both total variation and wavelet
domains can be further improved by randomly
undersampling the ill-conditioned region (54).

Despite these points, CS methods are not necessarily
immune to over-smoothing if they allow a reduction of
the data consistency with a large regularization parame-
ter. In this case, the data consistency becomes less
important than the prior information, that is, well-
conditioned frequency content no longer is kept intact in
favor of matching the CS constraint.

TKD and CFL2 solutions were provided as benchmark
algorithms. The performance metrics RMSE/HFEN/SSIM
for these algorithms were: 86.5/82.0/0.77 for TKD and
81.2/75.5/0.81 for CFL2. The winning algorithms had
metrics: 69.0/63.5/0.94, corresponding to an improve-
ment of 18% in RMSE, 19% in HFEN, and 16% in SSIM
over CFL2. The improvement in ROI accuracy was
smaller; CFL2 ranked seventh in this category. We con-
clude that if the average susceptibilities inside specific
gray and white matter ROIs are desired, a method as sim-
ple as CFL2 may provide sufficient accuracy. The

FIG. 4. QSM algorithms were optimized to minimize error metrics
in this challenge. This figure shows results of the GRAZ TGV algo-

rithm (see Table 1) with varying regularization parameter a0.
Although the QSM image with a0¼0.004 (right) suffered from
over-smoothing and conspicuity loss in fine features such as ves-

sels and the cortex, the RMSE was better than for the normally
utilized a0¼0.0005 (left). QSM images are scaled from �0.1 to

0.25 ppm.
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submitted algorithms, however, provided a marked

improvement in artifact mitigation and retention of high-

frequency features relative to the CFL2 benchmark.
In the last few years, several research groups have pro-

posed single-step QSM algorithms, which estimate the

underlying susceptibility directly from the raw phase

without separate interim phase processing. Although a

very specific phase filtering pipeline (LBVþpolynomial

fitting) was applied to create the reference susceptibility

maps, the single-step algorithms were capable of provid-

ing competitive results despite the processing pipeline

bias for multi-step approaches in this challenge.
Among the submissions, one approach employed par-

allel computing on graphics processing unit (GPU) hard-

ware for rapid dipole inversion (CHICAGO TGV).

Despite solving the same underlying mathematical prob-

lem as other TGV-based methods, this has yielded differ-

ent performance metrics due to 1) using different

regularization parameters and a different number of itera-

tions, 2) different implementations of the mathematical

libraries, and 3) double precision (CPU) versus single

precision (GPU) computation, which also has a substan-

tial impact on iterative methods as any numerical differ-

ences accumulate.
However, the main discussion points of this reconstruc-

tion challenge were the identification of performance met-

rics that would be representative of susceptibility image

quality and the selection of reference susceptibility maps.

How Representative Are RMSE, HFEN, and SSIM of
Susceptibility Map Quality?

All three measures are global error metrics aiming to

summarize the mismatch against a reference image in a

single number. We intentionally allowed the contestants

to optimize for low RMSE by extensive parameter search.

Although the algorithm applied for the postchallenge

experiments shown in Figure 4 yielded highly over-

regularized smooth QSM images, the resulting RMSE

was only approximately 10% higher than that of the

winning algorithm. RMSE is a simple global error metric

and usually is not a reliable indicator of visual quality or

over-smoothing by itself. Recognizing this, we added

HFEN and SSIM to create a multi-dimensional perfor-

mance vector that would allow us to probe differences

between image features. However, the limited visual

quality of the submitted susceptibility maps leads us to

the conclusion that it will be important to find better

metrics for the evaluation of susceptibility map quality.
Although the reason that we provided the reference sus-

ceptibility map was to ensure each algorithm produced
the best scoring susceptibility map for the given metrics, a
major outcome of this challenge turned out to be that the
chosen numerical metrics, which are intensively applied
in computer vision research, were problematic because
they favored over-smoothing of the reconstructed suscep-
tibility maps. Over-regularization consistently was
observed as a strategy to improve all error metrics, leading
to an unexpected visual appearance of the susceptibility
maps that differs from the typical appearance of the maps
known from the literature.

Further insights on this issue could be gained by com-
paring the three fidelity metrics (RMSE, HFEN, and
SSIM) and quantitative accuracy inside regions of inter-
est (ROI error). Although the simple CFL2 method
ranked third in ROI accuracy, it was not in the top 10 of
any fidelity metrics. Despite performing well when aver-
age values were considered inside ROIs, its image qual-
ity suffered from streaking and blurring artifacts, which
were better captured by RMSE, HFEN, and SSIM metrics.
However, it is more difficult to gain insights from a com-
parison between the three fidelity metrics. RMSE, HFEN,
and SSIM aimed to capture overall error, high-frequency
deviation, and “visual” fidelity, respectively.

In future evaluations, some limitations of the metrics

could be mitigated by incorporating experts’ visual rating

of the submitted susceptibility maps. A potential way to

amend the RMSE metric could be to compare the gradients

of the susceptibility map against those in the reference

map via rRMSE ¼ 100 � jjrðx33 � xreconÞjj22 =jjrx33jj22. The

metric rRMSE may provide a more direct measure of the

fidelity of high-frequency components, and could comple-

ment the existing metrics and the visual rating.
However, although optimization in respect to certain

quality measures will require further systematic investi-

gations, the degree of regularization also should be cho-

sen according to the subsequent usage of the QSM

images, depending on whether this is anatomical ROI

evaluation, voxel-based analysis, or visual inspection by

radiologists.

Selection of the Reference Susceptibility Map

We selected x33 instead of the COSMOS solution as stan-
dard reference to eliminate the potential orientation bias
in the latter susceptibility map. However, this required
the assumption that phase contributions from the off-
diagonal tensor terms, x13 and x23, in the transverse
plane are negligible. As demonstrated in Figure 1, these
contributions are nonnegligible because the tensor ele-
ments can have about 70% amplitude relative to x33.

One potential way to combine the strengths of both

reference map candidates in future challenges would be

to mask out the anisotropic regions in the COSMOS

map. Such an anisotropy mask could be obtained by

thresholding the STI anisotropy defined as

xmsa ¼ l1 � ðl2 þ l3Þ=2, for which li are the susceptibil-

ity tensor eigenvalues. This mask could be refined using

a white matter segmentation.
Also related to limitations of the employed reference,

there is clear evidence that the microstructural compart-

mentalization of magnetic susceptibility in white matter

and its water distribution has a significant impact on the

observed phase images (33–36). These effects are not

accounted for by either COSMOS, STI, or any of the single

orientation reconstruction methods, yielding an error in

susceptibility values in fiber bundles (33) that is difficult

to estimate. Because white matter represents a relatively

large brain volume fraction, both white matter (WM) meas-

urements and whole brain metrics will be affected by these

microstructural effects, and a particular regularization

inadvertently might improve the metrics without resulting

in a more accurate or precise reconstruction.
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In summary, the existence of phase contrast related to

off-diagonal tensor elements poses the question of what

is the perfect susceptibility map reconstructed from a

single-angle phase image. The presence of nonsuscepti-

bility contrast mechanisms, including chemical

exchange-induced frequency shifts (30), which currently

are not accounted for by multi-orientation QSM algo-

rithms, poses the question of how we can measure the

gold standard in vivo susceptibility map. Both seem to

be open questions in our field.

Lessons Learned From the First QSM Reconstruction
Challenge

We are fully determined to push forward, improve, and

extend this research endeavor based on lessons learned

from this initial challenge. In particular, feedback from

members of the QSM community who attended the Graz

Workshop and the EMTP study group meeting at the

ISMRM 2017 was encouraging to proceed with an evalu-

ation of the various algorithmic approaches to better

understand the potential and limitations of QSM. The

main suggestions and recommendations addressed the

limitations of the performance metrics for evaluation of

the submitted susceptibility maps and the choice of the

reference map. We list the conclusions from the various

discussions in the following:

1. Instead of relying entirely on error metrics, it would

be informative for experienced radiologists and

QSM experts to perform a visual assessment of sub-

mitted susceptibility maps.
2. The challenge could be divided into two parts, with

the first part assessing the quantitative accuracy with

respect to a known ground truth. To this end, the chal-

lenge could comprise phase data obtained using the

forward model (11) on a realistic numerical brain phan-

tom derived from STI or COSMOS susceptibility maps.

The data could be made more realistic by adding noise,

partial volume artifacts, and contributions from aniso-

tropic susceptibility sources. The second part would

involve in vivo patient data and aim to assess the

robustness of the methods in a clinical scenario in the

potential presence of motion, blooming, and signal

dropout artifacts. For parameter tuning, a COSMOS ref-

erence from a healthy control could be provided.
3. Reference and submitted susceptibility maps could

be compared on a per-voxel basis by assessing 1D

profiles or correlation coefficients.
4. A better in vivo reference map could be created by

incorporating the contribution of v13 and v23 into

the field map provided to the contestants (trans-

verse orientation). A potential way of implementing

this could be by rearranging the STI relation in the

transverse plane as follows:

HðkÞ ¼ D x33 �
kz

k2
ðkx x13 þ ky x23Þ

¼ Dx33 �
k2

z

k2

kx

kz
x13 þ

ky

kz
x23

� � [8]

now defining ~x¢ kx

kz
x13 þ

ky

kz
x23,

HðkÞ ¼ Dx33 �
k2

z

k2
~x þ 1

3
~x � 1

3
~x [9]

HðkÞ þ 1

3
~x ¼ Dðx33 þ ~xÞ: [10]

Equation [10] suggests that a new ground truth

susceptibility could be created by xnew¢x33 þ ~x,

and that the input local field data could be

amended by Hnew¢Hþ 1
3

~x. A numerical challenge

in computing ~x would be the division by kz for the

plane of frequencies, for which kz ¼ 0. To address

this, we can interpret division by kz as integration

along z in image-space, and multiplication by kx (or

ky ) as differentiation along x (or y) axes (1). In a

discrete implementation, integration would corre-

spond to summation over z indices, and differentia-

tion would be the difference between neighboring

voxels along x (or y) axes.
5. Include the computational efficiency as additional

information or a separate category, which would

require access to a single evaluation computer for

all contestants on which the processing time of all

algorithms could be accurately determined and

compared.
6. The data consistency could be used as an additional

metric. To this end, one could use the submitted

susceptibility maps in a forward field simulation

(11) and compare the resulting phase against the

measured phase.
7. Susceptibility maps should be compensated for the

known systematic underestimation before quality

metrics are calculated. This approach would avoid

underestimation resulting in poor metrics, despite

the reconstruction being of otherwise high quality.
8. The susceptibility could be evaluated exclusively in

deep gray matter structures in which QSM more

likely is to be correct given the absence of highly

anisotropic fiber bundles.
9. The mutual information, cross correlation, and

rRMSE between the reference and submitted maps

could be included as additional quality metrics.
10. Multi-echo phase data could be provided to allow

field maps to be derived by fitting the phase over

echo times (63–65).

Most of these suggestions are feasible but may require

additional data processing and acquisition. We already

have updated the downloadable data set to include the

magnitude and phase data from all 12 directions. This

dataset could facilitate extensions such as an STI chal-

lenge or future research toward computation of a better

reference map. Because this dataset includes x33 and

xCOSMOS, as well as all components of the susceptibility

tensor, future publications on new algorithms may report

performance metrics relative to any of these.
Another interesting avenue to explore could be issuing

subchallenges with clinical data from populations with

different diseases. Such a challenge would be an excel-

lent opportunity to test the robustness of the algorithms

in the clinical setting, and performance evaluation

would benefit from the experience of neuroradiologists.
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However, the lack of a true gold standard reference ren-

ders difficult the quantitative assessment of susceptibil-

ity maps beyond the description of apparent artifacts.

CONCLUSION

The substantive differences between the various submit-

ted susceptibility maps highlight a critical limitation of

current regularized QSM techniques: the appearance of

the resulting susceptibility maps depends strongly on

the algorithm used and the associated parameter choices.

Hence, a direct comparison of results from studies

employing different QSM algorithms and parameters is

challenging. Consequently, in the EMTP study group

meeting at the ISMRM 2017 it was consensually decided

that another challenge will be designed based on the les-

sons learned from the present challenge.
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